(n^2+n)/2=1000

Simple and best practice solution for (n^2+n)/2=1000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n^2+n)/2=1000 equation:



(n^2+n)/2=1000
We move all terms to the left:
(n^2+n)/2-(1000)=0
We multiply all the terms by the denominator
(n^2+n)-1000*2=0
We add all the numbers together, and all the variables
(n^2+n)-2000=0
We get rid of parentheses
n^2+n-2000=0
a = 1; b = 1; c = -2000;
Δ = b2-4ac
Δ = 12-4·1·(-2000)
Δ = 8001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8001}=\sqrt{9*889}=\sqrt{9}*\sqrt{889}=3\sqrt{889}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{889}}{2*1}=\frac{-1-3\sqrt{889}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{889}}{2*1}=\frac{-1+3\sqrt{889}}{2} $

See similar equations:

| (n^2+n)/2=990 | | n^2+n/2=990 | | n^2+n=1980 | | n^2+n=990 | | 5(a+8)−3(7a+6)=−58 | | X.2x.2x^2=216 | | 2x+5=3+-1 | | -4(2+x)=-56 | | 7=a-9 | | 7(4-5x)=63 | | Y=5x=9 | | 6+2/3x=10 | | 7x−10=18 | | 7r−10=18 | | 17/11=x/9 | | -4+4=y | | 6x+20=7x+2 | | r-6-4r=-9 | | r-6-4r=9 | | 21-3p=3(-4p-8) | | 30+k=9 | | -6(1x=5)=-72 | | (2x+16)=0 | | 1.2(h-10)=3(2.2h+4) | | 3+4×+×=2x+15 | | 5(1x+4)=-20 | | -7w+5=82 | | 2(6-6x)=12 | | 34=8(9z+5) | | |5x+7|=6x+2 | | 6r+2=12−2 | | -8(6y+5)=-19 |

Equations solver categories